Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Users often rely on GUIs to edit and interact with visualizations — a daunting task due to the large space of editing options. As a result, users are either overwhelmed by a complex UI or constrained by a custom UI with a tailored, fixed subset of options with limited editing flexibility. Natural Language Interfaces (NLIs) are emerging as a feasible alternative for users to specify edits. However, NLIs forgo the advantages of traditional GUI: the ability to explore and repeat edits and see instant visual feedback. We introduce DynaVis, which blends natural language and dynamically synthesized UI widgets. As the user describes an editing task in natural language, DynaVis performs the edit and synthesizes a persistent widget that the user can interact with to make further modifications. Study participants (n=24) preferred DynaVis over the NLI-only interface citing ease of further edits and editing confidence due to immediate visual feedback.more » « less
-
After decades of progress, database management systems (DBMSs) are now the backbones of many data applications that we interact with on a daily basis. Yet, with the emergence of new data types and hardware, building and optimizing new data systems remain as difficult as the heyday of relational databases. In this paper, we summarize our work towards automating the building and optimization of data systems. Drawing from our own experience, we further argue that any automation technique must address three aspects: user specification, code generation, and result validation. We conclude by discussing a case study using videos data processing, along with opportunities for future research towards designing data systems that are automatically generated.more » « less
-
We propose a new technique based on program synthesis for automatically generating visualizations from natural language queries. Our method parses the natural language query into a refinement type specification using the intents-and-slots paradigm and leverages type-directed synthesis to generate a set of visualization programs that are most likely to meet the user's intent. Our refinement type system captures useful hints present in the natural language query and allows the synthesis algorithm to reject visualizations that violate well-established design guidelines for the input data set. We have implemented our ideas in a tool called Graphy and evaluated it on NLVCorpus, which consists of 3 popular datasets and over 700 real-world natural language queries. Our experiments show that Graphy significantly outperforms state-of-the-art natural language based visualization tools, including transformer and rule-based ones.more » « less
-
Formalizing Visualization Design Knowledge as Constraints: Actionable and Extensible Models in DracoThere exists a gap between visualization design guidelines and their application in visualization tools. While empirical studies can provide design guidance, we lack a formal framework for representing design knowledge, integrating results across studies, and applying this knowledge in automated design tools that promote effective encodings and facilitate visual exploration. We propose modeling visualization design knowledge as a collection of constraints, in conjunction with a method to learn weights for soft constraints from experimental data. Using constraints, we can take theoretical design knowledge and express it in a concrete, extensible, and testable form: the resulting models can recommend visualization designs and can easily be augmented with additional constraints or updated weights. We implement our approach in Draco, a constraint-based system based on Answer Set Programming (ASP). We demonstrate how to construct increasingly sophisticated automated visualization design systems, including systems based on weights learned directly from the results of graphical perception experiments.more » « less
An official website of the United States government

Full Text Available